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Risk assessment comprises four steps: hazard identification, dose-response assessment, exposure

assessment, and risk characterization. In this study, the effects of increased ultraviolet B (UVB,

280-315 nm) radiation on immune functions and the immunological resistance to infectious dis-
eases in rats were analyzed according to this strategy. In a parallelogram approach, nonthreshold
mathematical methods were used to estimate the risk for the human population after increased

exposure to UVB radiation. These data demonstrate, using a worst-case strategy (sensitive indi-

viduals, no adaptation), that exposure for approximately 90 min (local noon) at 40°N in July

might lead to 50% suppression of specific T-cell mediated responses to Listeria monocytogenes in
humans who were not preexposed to UVB (i.e., not adapted). Additionally, a 5% decrease in the
thickness of the ozone layer might shorten this exposure time by approximately 2.5%. These data

demonstrate that UVB radiation, at doses relevant to outdoor exposure, may affect the specific

cellular immune response to Listeria bacteria in humans. Whether this will also lead to a lowered

resistance (i.e., increased pathogenic load) in humans is not known, although it was demonstrat-

ed that UVB-induced immunosuppression in rats was sufficient to increase the pathogenic load.

Epidemiology studies are needed to validate and improve estimates for the potential effects of
increased UVB exposure on infectious diseases in humans. Key words: immunosuppression,
immune system, Listeria, risk assessment, UVB radiation. Environ Health Perspect 106:

71-77(1998). [Online 21 January 1998]
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Experimental data on the effects of ultravio-
let B (UVB) radiation on infectious diseases,
easily obtained in laboratory animals, cannot
be acquired using humans for ethical rea-
sons. Epidemiological data are not available
until now. Even the effect of sunlight on
fever blisters, a well-known skin infection
resulting from the Herpes simplex virus and
associated with sun exposure, has not been
analyzed in quantitative terms. One of the
major problems of epidemiology is the large
number of confounding factors. People
exposed to increased UVB levels (during sun
holidays) are also affected by other potential
immunomodulatory factors such as stress,
diet, temperature, etc. A possible alternative
is extrapolation of animal data to humans
with respect to the effects on infectious dis-
eases. These extrapolated data may be used as
a basis for risk and effect assessment of
immunotoxicological agents such as ultravio-
let light.

Risk assessment is a process of analyzing
relevant biological, dose-response, and
exposure data for a particular agent in an
attempt to establish qualitative and quantita-
tive estimates of adverse effects on human
health (). As defined by the frequently cited
National Academy of Science Report (2),
risk assessment comprises four steps: hazard
identification, dose—response assessment,
exposure assessment, and risk characteriza-
tion. This general framework covers the
process of assessing risk of cancer as well as

noncancer endpoints, including decreased
resistance to infections. The present study is
not aimed at the determination or calcula-
tion of the maximal tolerable dose of UV
radiation humans are advised or allowed to
be exposed to. This study only serves as an
estimation of the effect of exposure to
increased levels of UVB with respect to the
immune system and related resistance to
infections in comparison to humans that are
not exposed to increased UVB levels due to
ozone depletion.

The first step, hazard identification,
involves a largely qualitative evaluation of
available human and animal data to deter-
mine whether a chemical or physical agent
is a potential hazard. Consideration is given
to the dose, route, and duration of exposure
in the test species. Any possible change in
immune function, due to the agent studied,
indicates that this agent is a potential haz-
ard. Many studies indicate that suberythe-
mal doses of ultraviolet light can affect the
immune system in rodents as well as in
humans. The major effect of UV exposure
is suppression of the cellular immune sys-
tem and of natural killer cell (NK) func-
tion, which is found in humans as well as
in rodents. In rodent studies it has been
demonstrated that UV-induced immuno-
modulation can lead to a lowered resistance
to certain infections and tumors (3-1).

Following hazard identification, dose—
response studies (step 2 of risk assessment)
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give quantitative information, which is the
basis for obtaining the no-observed adverse
effect level (NOAEL) and the lowest adverse
effect level (LOAEL), which are threshold
values. This information is also necessary to
determine the effective dose, which induces a
certain level of suppression of an immune
function, e.g., 50% suppression (ED50), for
which it is assumed that there is no threshold
dose value. The ED50, the dose that inhibits
the response by 50%, can be calculated using
linear or nonlinear regression models that
quantify the relationship between dose and
effect by a mathematical expression. In stud-
ies concerning the immunosuppressive effects
of UVB, the ED50 is frequently used (3). For
many immune parameters, NOAEL,
LOAEL, and ED50 levels are still not avail-
able. In most studies only one or two differ-
ent UV doses were tested; thus, dose—~
response analyses are only available in a few
cases. Once these entities are determined,
specific factors can be applied to allow for
various phenomena such as intraspecies or
interspecies variability, irreversible effects, and
duration of exposure. The use of these specif-
ic factors, however, should be flexible and
incorporate any relevant available data on the
mechanism of action of the particular agent.
One approach that has been used is the appli-
cation of an uncertainty factor to the
NOAEL established in the most sensitive ani-
mal species tested. This uncertainty factor is
usually composed of a 10-fold factor to
account for interspecies differences and a 10-
fold factor for the intraspecies factor. If a
NOAEL is not available, an additional 10-
fold factor may be applied to the LOAEL.
These factors are all used to calculate or esti-
mate the maximal tolerable dose, i.e., the safe
dose, for human beings. Literature data on
the differences in susceptibility for UVB-
induced degenerative effects indicate that a
10-fold factor for interspecies extrapolation
overestimates the actual difference (4-8).
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The third step in risk assessment, expo-
sure assessment, often involves field measure-
ments on the agent and other estimates relat-
ing to human exposure such as composition
and size of population, biological and clinical
effects, and types, magnitude, frequencies,
and duration of exposure to the agent.

Risk characterization (step 4) is the
integration of the previous three processes;
it provides an estimated incidence of the
adverse effects in populations and the
potential health effects. As part of risk
characterization, the strength and weak-
nesses in each component of the assessment
are considered including assumptions, sci-
entific judgments, and to the greatest
extent possible, estimate of uncertainties.

In this paper, we describe an attempt to
assess the effects of increased UVB radiation,
due to changes in the ozone layer, on the
immunological resistance to infectious dis-
eases. For this risk assessment, a worst-case
approach was employed, i.e., adaptation to
UVB was not taken into account and non-
threshold (ED50) methods were used. For
the most part, data on the effects of UVB on
the immune system are from our laboratory.

Hazard identification. Immunological
studies showing the effects of UVB expo-
sure on the immune system have been
described and reviewed extensively. Hurks
et al. (18) reviewed the general aspects of
UV radiation on the immune system. They
showed that suberythemal doses [0.25 and
0.50 of the minimal erythemal dose (MED)
for the rat] of UVB radiation daily for 7
consecutive days could induce severe sup-
pression of NK activity and mixed lympho-
cyte responsiveness (MLR), which is a valu-
able parameter for the cellular (T-cell
dependent) immune system of splenocytes

1. Effects on infectious
diseases in rodents (73-78)

Trichinella spiralis Listeria monocytogenes
-Parasite load 1 -Bacterial load T

in rats (9,10). In addition, several in vitro
(cell suspensions), in situ (skin sheets), and
in vivo experiments indicated that UVB
exposure impaired several immune func-
tions such as T-cell function (MLR
responses) and the alloreactive capacity of
(epi)dermal cells [mixed skin lymphocyte
response (MSLR)] in mice, rats, and
humans in a comparable fashion (9,11,12).
The MSLR is a valid parameter for the ini-
tiation phase of the immune response (i.e.,
antigen presentation).

In a Listeria monocytogenes host resistance
model in the rat a similar UVB exposure
protocol (i.e., 0.5 MED daily for 7 consecu-
tive days) resulted in an eightfold increase in
the number of bacteria in the spleen, which
is a target organ for this bacterium after
intravenous infection; this result was found 4
days after infection (13). Delayed type
hypersensitivity responses and specific lym-
phocyte proliferation assays, both parameters
for T-cell mediated immunity to Listeria,
were inhibited by these UVB exposure pro-
tocols, indicating that UVB exposure
induces suppression of the specific T cell-
mediated immune response to Listeria, lead-
ing to delayed clearance of bacteria from the
spleen. Infection of rats with the parasite
Trichinella spiralis was also affected by UVB
exposure (14). The 7-day UVB exposure
protocol, starting 7 days after infection,
induced increased numbers of larvae in the
muscle tissue of the infected rats, as detected
by digestion and histological methods. In
addition, cellular immune responses to T.
spiralis were inhibited by UVB exposure
(15). Cellular immune responses to herpes
simplex, type 1 (skin-associated) and rat
cytomegalovirus (nonskin-associated) were
also inhibited by UVB exposure (16,17). In

the case of rat cytomegalovirus, this resulted
in an increased amount of virus present in
the salivary gland 26 days after infection.
Detailed studies with the Herpes simplex I
virus in the rat and in the mouse (1) indi-
cated that the time point of exposure is very
important for initiation of the immunosup-
pression.

From these studies it was concluded
that low doses of UVB radiation, relevant
to the outdoor situation, are able to impair
the immune system. Thus, UVB radiation
is a potential hazard to immunological
functions and to the immunological resis-
tance to infectious diseases in humans.
Recent studies indicate that if animals were
exposed for longer periods to UVB, the
immunosuppressive effects were less pro-
nounced. This indicates that adaptation
processes may play a role and ultimately
may lead to less severe effects. In this paper
we describe how we characterized the effect
of immunosuppression by ultraviolet irra-
diation in humans; adaptation processes
were not taken into account in this study.

Methods

Dose-response assessment. In order to per-
form dose—response assessments, various
models were developed to test the immuno-
toxic effects of UVB radation on the
immune response and, more precisely, on
the immunological resistance to infectious
diseases. Dose—response assessment was
applied using linear and nonlinear regression
methods to evaluate the relationship
between dose and effect and to calculate an
EDS50 value. Data obtained from both
methods of analysis were used to compose a
factor to account for interspecies variation
(IEV; between different species, i.e. rats and

Table 1. Analysis of ultraviolet B radiation doses (kJ/m?) using FS40 lamps
necessary to obtain the 50% immunosuppression level (ED50) for the para-

meters presented
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Figure 1. Parallelogram for the effects of ultraviolet B radiation on the resistance
to infectious diseases. Abbreviations: LST, lymphocyte stimulation test; DTH,
delayed type hypersensitivity; NK, natural killer cell; MLR, mixed lymphocyte
responsiveness; MSLR, mixed skin lymphocyte response.
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Abbreviations: LST, lymphocyte stimulation test; NK, natural killer cell; MLR, mixed

lymphocyte responsiveness; MSLR, mixed skin lymphocyte response.
*These data were used to compare effects of UVB radiation on i logical
tious diseases and effects on immune functions in rodents. All other data were used to compare
effects on immune functions in rodents and effects on immune functions in humans.

bThe first value is for mouse and the second is for rat.

to infec-
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humans). Some models could also be used
to compose a factor for intraspecies variation
(IAV; between different human subjects).
Figure 1 illustrates the paradigm used for
human dose-response assessment by extrap-
olation from animal data (13-20).

Effects of UVB on the resistance to infec-
tious diseases in rodents. A dose—response
curve of the effect of UVB exposure on the
immunological resistance to L. monocyto-
genes (13) indicated a dose-dependent
decrease of the specific lymphocyte prolifer-
ation (ex vivol in vitrg) induced by coculture
of lymphocytes with heat-killed Listeria bac-
teria [lymphocyte stimulation test (LST)].
The proliferation was measured using incor-
poration of >H-thymidine. Using log-trans-
formed LST data, a dose—response curve
and an ED50;; ; ¢p (UV dose necessary to
impair the LST to Listeria by 50%) was cal-
culated (Table 1).

Effects of UVB on immune functions in
rodents. In vivo UVB radiation dose-
dependently suppressed NK and MLR
activity of splenocytes or blood cells, and
ED50 values were calculated (Table 1) (9).
EDS50 values were also estimated from data
on the effects of acute #n vitro UVB expo-
sure (11) on log MLR responses (Table 1).
The effects of in vitro (cell suspensions)
and in situ (skin pieces) exposure on the
allogenic response measured in the MSLR
indicated that the allogenic capacity of epi-
dermal cells (model for antigen presenta-
tion) from rats and mice was dose-depen-
dently suppressed (12).

Effects of UVB radiation on immune
Sfunctions in humans. In vitro UVB exposure
of blood cells and #n vitro and in situ UVB
exposure of epidermal cells indicated a dose-
dependent decrease of MLR (/1) and
MSLR (12) (Table 1). For the estimation of
the intraspecies variation (IAV) in the
human population, linear regression was
performed with both the intercept and the
slope considered as normally distributed
random variables, representing interindivid-
ual variation. This model was fitted to the
human data using an approach for the
analysis of generalized linear mixed models
as published by Engel and Keen in 1994
(21). The variance, indicated in the formula
as standard deviation (SD) of the slope (4),
was estimated and represents interindividual
variation (susceptibility). Thus, the suscepti-
bility of 5% of the population is larger than

695% >b + z X SD, 1)
where z is the standardized normal deviate
= 1.645.

We define the IAV as

ED50y50,/ ED50,,,,,= 8,0l b950: (2)

IAV for the MSLR{ o in st (mixed skin
lymphocyte response after exposure of
human epidermal skin sheets) was estimat-
ed at a factor 0.5 (average subject relative
to sensitive subject) (12).

Relationships were assessed between the
effects of UVB exposure on immune func-
tions and the resistance to infectious dis-
eases in rodents. ED50 values of the host
resistance and the immune parameters indi-
cated that the MLR and NK were some-
what more susceptible for UVB than the
LST to L. monocytogenes (Table 1).
Nevertheless, the MLR and NK, as well as
the LST to Listeria were significantly sup-
pressed after comparable cumulative doses
of 1-10 kJ/m? UVB radiation. Doses in the
same range were able to impair the overall
resistance to L. monocytogenes, T. spiralis,
and cytomegalovirus in the rat (13,14, 16).

Using a similar UVB exposure protocol
in rodents and humans, it was possible to
compare the dose-response relationship.
The effects of in vitro UVB exposure on the
MLR activity of splenocytes did not indi-
cate significant differences (Table 1). The
effects of in vitro and in situ UVB exposure
on alloreactive capacity of epidermal cells
[MSLR; i.e., a parameter for the initiation
of immune responses (antigen presenta-
tion)] indicated that the human cells were
less susceptible for UVB radiation. ED50
values of humans, mice, and rats indicated a
four- to sixfold factor in susceptibility for in
vitro and #n situ UVB exposure between rats
and mice on the one hand and humans on
the other (Table 1).

Calculation/estimation of the ED50
value for humans for the effects of UVB
exposure on the resistance to infectious dis-
eases. We used the ED50 of the specific T-
cell response to Listeria because the data
permitted a reliable dose—response curve
(13). In addition, a UVB-induced suppres-
sion of specific T-cell responses to Listeria
may lead to an increased load of bacteria in
the spleen. The dose necessary to inhibit
the specific lymphocyte response by 50%
was sufficient to lead to a delayed clearance
of the bacteria in the rat. Using all relevant
and adequate data, the IEV between rats
and humans was calculated as

IEV = ED50,,, IEDS0,,

Analysis of all the immunological models
used suggested some interspecies differences
in susceptibility for UVB-induced effects on
immune functions and the skin after in vivo,
in situ, and in vitro UVB exposure. The IEV
calculated had to satisfy certain conditions:

e The immunological model had to be
well defined in order to accurately
describe the dose—response dependency
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for all the species tested. This could also
lead to adequate ED50 values

® The model needed to be relevant for the
mechanisms by which UVB radiation
induces immunosuppression

e The UVB exposure of the different
species had to be comparable to actual
outdoor exposure (order of relevance: i
vivo (exposure of volunteers) >in situ
(exposure of skin sheets) >in vitro (expo-
sure of skin cell suspensions or skin cell
lines) >exposure of blood cells

e The UVB exposure protocol for all
species had to be exactly the same (same
sources, same dose range).

When all the conditions were examined
in the immune function models (MLR and
MSLR) (11), the inhibition of (allo)antigen
presentation, as measured by MSLR, was
more relevant to the mechanisms by which
UVB radiation induces immunosuppression
than the inhibition of the MLR activity of
splenocytes or blood cells. Inhibition of
functional activity of the Langerhans cells as
measured in the MSLR seems to be a sensi-
tive biomarker for effects of UVB on the skin
(12) and also for systemic effects when those
UVB-affected LC migrate to the lymph
nodes (22). In situ UVB exposure (UVB
exposure of skin pieces) was also more rele-
vant for actual outdoor exposure than the in
vitro UVB exposure of cell suspensions.
Finally, the model describing the effects of in
situ UVB exposure on the alloantigen pre-
sentation also satisfied the requirement for
exact protocol duplication; all species were
exposed to exactly the same source of UV
under exactly the same conditions in the
same laboratory.

The IEV was calculated by dividing the
ED50y 41 R human (4:176) by the ED50yq;
oo (1,085) leading to the IEV of 3.85. When
the IEV factor was calculated using ED80 or
ED20 values, the IEV factor was similar.

IAV was assessed in the MSLR assay at
the value of 0.5.

Thus, ED5: ohuman, Lis, LST =
ED50,,, 1, 157X TEVyis1r X IAViys1r

13.1 (kJ/m2) = 6.8 (kJ/m2) x 3.85 x 0.5

(cumulative dose).

Exposure assessment. Exposure to UVB
radiation can be divided into five categories:
¢ Exposure to sunlight, which can be divid-
ed into the normal exposure in the
Netherlands and more excessive UVB
exposure (when people are on summer
holiday in, for example, southern
European countries)

o Exposure to UVB by illumination, (e.g.,
by halogen desklamps)
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® Exposure to UVB radiation for cosmetic
reasons

o Exposure to UVB radiation for therapy

© UVB exposure in the workplace.

In 1991 Slaper and Eggink (23) esti-
mated the yearly exposure to UVB radia-
tion of an average citizen in the Nether-
lands to be 112 minimal erythema doses
(MEDs). The main part of this exposure is
due to sunlight; however, there are special
groups in the Dutch population for which
the main part of exposure is due to artificial
sources. In addition, excessive exposure to
sunlight during summer holidays could
lead to increases of 50-100 MEDs on a
yearly basis (23,24).

It is clear that the UVB dose, expressed
as MEDs, did not provide enough infor-
mation on the immunosuppressive capacity
of UVB radiation (9,10). Comparison of
action spectra for erythema and suppres-
sion of contact hypersensitivity showed
some differences. Suppression of the resis-
tance to infections was mainly due to sup-
pression of the activity of T-cell immunity
'(13-16). As a first step, it was postulated
that the action spectrum for the suppres-
sion of the resistance to infectious diseases
in rodents is similar to the action spectrum
of the suppression of contact hypersensitiv-
ity (CHS) (25). CHS is a good test model
for cellular immunity. De Fabo et al. (3)
calculated biological effective irradiation
for immunosuppression (BEL,_ ) for sever-
al latitudes and time points in summer and
winter. In this study, the spectrum of the
sun [calculated from UV spectral irradiance
incident on the earth’s surface using the
radiative transfer model summarized by
Frederick and Lubin (26)] was multiplied
by the action spectrum for suppression of
CHS, 'and biological effective doses were
calculated (Table 2). Each individual value
of the action spectrum curve for immuno-
suppression as presented and calculated by
De Fabo et al. (25) was taken into account
in our exposure assessment, which is in
contrast to a preliminary study published
earlier in which less advanced computer
programs were used (19).

Results

Risk characterization. The question
that had to be raised was the relevance of an
ED50  anpistsT Of 131 kJ/m? UVB radi-
ation (280—315 nm, FS40, North American
Philips F40; Westinghouse, Bloomfield, NJ)
to the actual exposure of people outdoors.
Several studies showed that damaging effects
of UV radiation were wavelength depen-
dent, with UVC and short UVB responsible
for the deleterious effects. UVC and short
wavelengths of UVB are either hardly pre-
sent or not present in normal sunlight. For
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that reason, it was necessary to translate the
dose of UVB, as mentioned in the
dose—response assessment, into biologically
relevant doses. However, for the calculation
of a biologically effective dose concerning
suppression of resistance to Listeria, a wave-
length action spectrum for CHS in mice was
used, as determined by de Fabo and
Noonan (25). The spectrum of the FS40-
lamp was multiplied by all data points of
the action spectrum curve for CHS, as
demonstrated schematically in Figure 2 by
calculating a biological effective irradiance
(BEL_ ) for every wavelength. Thus, even
the shoulder (dip) in the action spectrum
was taken into account. The area under the
curve for FS40, was calculated, giving the
total BEL, for the wavelengths between
280 and 315 nm (the influence of UVR
>315 nm is negligible using FS40 lamps).

The value of this BEL, (280-315 nm)
was 0.186 W/m?. The mtegratcd UVB irra-
diance of the FS40 curve, as measured by
the Optronics 752-OL-PMT (Optromcs,
Orlando, FL) was 1.589 W/m? (uncorrect-
ed), so the BEL,  was 11.7% of the total
irradiance. It was calculated that the biologi-
cal effective ED50 value for suppression of
T-cell responses to Listeria was 13.1 X 0.117
= 1.53 kJ/m? (normalized to 270 nm).

The calculated biological effective irradi-
ance for 50% i immunosuppression (BEL )
of sun exposure at certain latitudes was relat-
ed to immunosuppression found in our
Listeria model, defined as ED50y 4 1; 157
(see Table 2). Dividing the EDSObed LisLST
by the BEL__, as calculated by De Tabo et
al. (3), gave a first prediction on the dura-
tion of sun exposure (at a certain latitude,
clear skies, local noon) necessary to induce
50% suppression of specific T-cell response
to Listeria. For instance, it was predicted
that 92 min exposure around noon, with
clear skies in July at 40°N, would lead to
50% suppression of the specific T-cell

response to Listeria. In addition, assuming a
20% decrease of ozone, it was calculated
that 82 min was enough to induce the same
immunosuppression. As another example, in
January at a latitude of 40°N, this immuno-
suppression might be induced after 350 min
(19). When these data are compared to the
UVB dose that induced increased load of
Listeria in the rat spleen, it can be predicted
that relevant UVB doses may lead to an
impaired clearance of Listeria bacteria in
humans that had not adapted to UVB expo-
sure (13).

Discussion

Hazard estimation of the UVB-induced
effects on the resistance to infectious dis-
eases indicated that UVB radiation
impaired cellular immune responses, lead-
ing to decreased resistance to different
infectious agents in the rat (9-16).
Dose-response assessment of the effects
of UVB radiation on the resistance to infec-
tious agents and immune functions in mice,
rats, and humans showed that there was a
dose-dependent relationship between UVB
exposure and several effects tested. The rela-
tionship between UVB exposure and sup-
pression of immune functions such as the
MLR and MSLR was quantified in linear
and nonlinear regression models. For
dose-response assessment, ED50 values
were used instead of NOAEL and LOAEL
values because ED50 values are more sensi-
tive in detecting small differences induced
by UVB exposure. For the ED50 calcula-
tion, all dose—response data, usually more
than six dose groups, were used in a regres-
sion analyses, which is much more precise
than the estimation of a NOAEL or
LOAEL value; NOAELs and LOAELS are
mostly dependent upon data from only two
or three dose groups. In a linear regression
model, all samples (7) are included in
the determination of the standard error

Table 2. Predicted effects of ozone decreases on the biologically effective irradiance for suppression of
the specific cellular immune response to Listeria bacteria (local noon, clear skies, southern Europe)

Biologically

Ozone Decrease effective Increase Calculated time
Latitude (dobson inozone® irradiance  in BEI 3 (min) for 50%
(month) units)? (%) (W/m2)3 (%) RAF,, _immunosuppression®
40°N (January)  335.6 0 0.073 0.0 - 350

3188 5 0.075 3.0 0.6 340

302.0 10 0.078 6.3 0.63 327

268.5 20 0.083 135 0.68 307
40°N (July) 307.9 0.278 0.0 - 92

2925 5 0.285 25 0.50 90

2771 10 0.292 5.3 0.53 87

2463 20 0.310 1.5 0.58 82

Abbreviations: BEI, biological effective irradiance; RAF, radiation amplification factor. Adapted from De Fabo et al. (3)
and Garssen et al. (79) (with permission from Photochemistry and Photobiology).

SLymphocyte proliferation in response to Listeria bacteria.
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(standard deviation divided by the root
square of 7). This results in a smaller stan-
dard error than when two groups of the total
population are compared. The significance
of the difference between several groups is
dependent on the size of the coefficient of
the difference divided by the standard error;
a larger coefficient indicates a stronger signif-
icant result. A second reason for using
ED50s is that it is possible to compare the
data with the action spectrum of De Fabo
and Noonan (25), who calculated the action
spectrum using ED50 values for contact
hypersensitivity. Comparison of the effects of
UVB exposure on immune functions and
the immunological resistance to infectious
diseases in rats indicate that there are no
major differences in the sensitivity of those
assays for UVB radiation. This result is
important for the subsequent extrapolation
of the effects of UVB exposure on immuno-
logical resistance in rats to humans. In viral
infections, the activity of NK is important
for the clearance of virus from the host.
However, it has been demonstrated that the
effects of immunotoxic compounds on
immune parameters, such as NK activity, do
not correlate to the effects of the same com-
pounds on the resistance to cytomegalovirus
(27). In such a case, the use of the parallelo-
gram approach for the extrapolation of
immunotoxic compounds is not complete
because differences in susceptibility between
rats and humans, measured by the NK assay,
do not completely account for the actual dif-
ferences in susceptibility between these

species for the resistance to virus infections.
In addition, Noonan and Lewis (28) found
that some immune parameters can be affect-
ed by UVB easily, without a detectable effect
on the resistance to a pathogen such as
Schistosoma mansoni. For that reason, it may
be necessary to add other immune functions
tests such as cytotoxic T-lymphocyte assays
or lymphocyte stimulation tests to increase
correlation between immune function and
resistance.

Comparisons of the effects of UVB
exposure on immune functions indicate that
interspecies differences depend on the assay
used, probably because each assay covers
only a part of the immunological response.
For example, the MSLR assay used for the
calculation of the IEV primarily accounts
for effects of UVB radiation on Langethans
cells in the skin and may also be relevant for
systemic effects when the UVB-affected
Langerhans cells migrate to the lymph nodes
(22). However, the effects measured on
MSLR may not always correlate to all effects
of UVB exposure on immunological resis-
tance to infectious diseases; UVB radiation
can impair immune responses by different
pathways, e.g., by impairing Langerhans
cells and also by the induction of several
cytokines that have local and systemic
immunomodulatory effects (29). Therefore,
the IEV used in this risk assessment may not
cover all effects of UVB radiation on the
immune system, and additional data are
helpful. IEV and IAV values were calculated
based on ED50 values for the different
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Environmental Health Perspectives = Volume 106, Number 2, February 1998

species and individuals. If ED, or EDg,
values were used instead of ED50 values,
similar interspecies and intraspecies factors
were obtained. Studies on the effects of
UVB exposure on the development of CHS
in humans (4,30) and different strains of
mice (31,32) showed a negligible inter-
species variation, not exceeding a factor 1.5.
This might indicate that the IEV we used is
too high. The use of antigen-specific
immunological assays, such as CHS and
LST in combination with host-resistance
models, may provide additional data on the
IEV. For example, effects of UVB exposure
on specific immune responses to herpes sim-
plex, type 1 can be studied in herpes sim-
plex, type 1-positive psoriasis patients and
human volunteers and compared to similar
studies in the rat. Another human infection
that may produce additional data on the
effects of UVB on the immunological resis-
tance to infectious diseases and can be com-
pared with studies in rodents, is human
papilloma virus infection of the skin. There
are indications that this infectious agent is
also associated with certain forms of skin
tumors (33,34).

Another problem in the analysis of the
IEV is the presence of genetic differences.
Studies by Streilein et al. (6) and Taylor et al.
(35) provide evidence that differences in sus-
ceptibility for the effects of UVB radiation
on CHS probably depends on several genetic
factors. In mice it was demonstrated that
UVB-induced immunosuppression is strain
dependent and could be attributed to several
genetic factors (36,37). Additional studies
with human volunteers should be carried out
using large groups of individuals to carefully
estimate the influence of IAV. Another
approach is to study extra-susceptible human
individuals, such as skin cancer patients and
renal transplant patients receiving immuno-
suppressive therapy, to analyze the
dose—response relationship between UVB
radiation and specific inmunosuppression.

The estimated ED50 ; can
be compared to previouslh):1 n[l;i‘BlIi‘lssflléﬁ-data
on the effects of UVB exposure on humans.
Several studies indicate that a total dose of
5.8 kJ/m? UVB radiation is enough to sup-
press CHS responses in Caucasians as well
as in African Americans (4,6,30). However,
the UV source used in these studies, a high-
pressure mercury lamp, had a different-
spectrum compared with the FS40 lamp,
and the irradiance was measured from 290
to 320 nm. Thus, these data do not easily
compare to our estimated value. Cooper et
al. (38) showed that even a single suberythe-
mal dose of UVB radiation could induce
local suppression of CHS responses. Results
from their study were also difficult to relate
to the estimated ED50 . ;1 o1 because
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of dissimilarities in the exposure protocol
and dosimetry of the experiments. Effects of
in vivo UVB radiation on the MSLR activi-
ty of skin cells (39) indicate that cumulative
doses of UVB radiation between 5 and 30
kJ/m? are needed to obtain suppression of
the MSLR response. These values can be
compared in some extent to the estimated
ED50 | an. LisLsT> Which is 13.1 kJ/m2.
Finally, Gi]’innour et al. (20) indicated that in
psoriasis patients 30 kJ/m? UVB radiation
could induce a suppression of the NK activi-
ty of peripheral blood mononuclear cells. It
can therefore be concluded that the estimat-
ed ED50y . ;157 is somewhere in the
middle of the range of the published data on
the effects of UVB exposure on humans.
Exposure assessment of UVB radiation
must take into account the action spectrum
used. UVB-induced immunosuppression has
an action spectrum different from that of
UVB-induced carcinogenesis. To estimate
the biologically effective dose to which
humans are exposed outdoors, the spectrum
of the sun was multiplied by the action spec-
trum of contact hypersensitivity as deter-
mined by De Fabo et al. (3,25). It appears
reasonable to suggest that an action spectrum
for the UVB-induced effects on the
immunological resistance to infectious dis-
eases is similar to the action spectrum of
UVB-induced immunosuppression of CHS
because the effects on the resistance to infec-
tious agents are often mediated by effects on
specific T-cell responses. For example, in the
immunological resistance to L. monocytogenes
and T. spiralis, specific T-cell responses are
important. In the CHS reaction, effects on
specific T-cell responses are measured, and it
is reasonable to postulate that these action
spectra are comparable. It is, however,
worthwhile to wotk out an action spectrum
for the effects of UVB on the resistance to an
infectious agent in rats. To assess possible
risks due to UVB exposure for the incidence
or severity of infectious diseases in a popula-
tion, an action spectrum for increases in the
load of Listeria bacteria in the spleen is more
appropriate than just an action spectrum for
the UVB-induced immunosuppression of
specific T-cell responses to this pathogen.
Immune function studies (9,10) indicate
that the immunological effects observed
after UVB exposure daily for 14 consecutive
days to 750 J/m? are not comparable to
effects observed after daily UVB exposure
for 7 days to 1500 J/m?, in spite of equal
total UVB doses. Thus, a cumulative dose
of UVB radiation does not give enough
information on the UVB-induced effects
on the immune system; exposure intensity
and exposure duration may play a role in
the effects measured. The UVB dose that
induced suppression in the Listeria model
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was presented as a cumulative dose; howev-
er, in our experiments, the rats obtained
this dose over a period of 7 days. Thus, it
might be appropriate to divide the biologi-
cal effective dose (BEDhuman,Lis s by 7
and present that value as the daily UVB
exposure for 7 consecutive days that could
induce 50% immunosuppression of the
specific T-cell response to Listeria. Thus,
the total period necessary to induce 50%
suppression of Listeria-specific T-cell
response in July at 40°N would be less
than 15 min daily for 7 consecutive days.

Risk assessment of the carcinogenic
potential of UVB radiation is easier to deter-
mine than risk assessment of UVB-induced
suppression of the immunological resistance
to infectious diseases. For risk assessment of
the carcinogenic potential of UVB radiation,
it is relatively easy to quantify the adverse
endpoint, and its adversity is beyond dis-
pute. Decreases in T cell-specific immune
responses to Listeria are difficult to quantify
in terms of increases in incidence or severity
of infectious diseases in a population. An
increased infection load, leading to clinical
effects, can be defined more definitely as an
adverse effect and may be used as an end-
point for risk assessment.

In conclusion, although some infections
such as Schistosoma mansoni (28) are not
affected by UVB exposure, UVB exposure
can impair the immunological resistance to
many infectious diseases in rats (13-16).
These data appear to be relevant for the
human situation because many immunosup-
pressive effects found in animals can also be
found in humans. The exact quantitative
relationship between immunosuppressive
effects of UVB radiation and an increased
incidence of infectious diseases in the
human population needs a cautious
approach, and follow-up studies are essen-
tial. Epidemiology may help the analyses of
UVB effects on infectious diseases and
should be an area of future research.
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